
3-D elastic modeling

Conclusions

The E3D explicit finite-difference code is capable of
simulating seismic wave propagation in large geologic models.
This code incorporates a number of advanced features
including full 3-D elastic modeling, viscoelastic modeling,
free-surface topography, propagating and variable density
grids, hybridization, and parallelization. The capability for
anisotropic modeling is being implemented. The code runs on
a number of platforms, from desktop workstations to high
performance computers and massively parallel processors.

E3D will be used to generate a subset of the acoustic SEG/
EAEG model data set. The acoustic and elastic synthetic data
will be compared to identify potential pitfalls when acoustic
modeling assumptions are used to image seismic data. These
pitfalls take the form of “elastic noise”, where mode-converted
energy is incorrectly interpreted as geologic structure, and
where acoustic amplitudes are reduced because energy is lost
to mode converted waves. In addition, the elastic synthetics
will be used to investigate the effectiveness of using elastic
data in the imaging process.

Three-dimensional full-physics seismic modeling requires
significant computing resources. For example, elastic
simulations over the SEG/EAEG models will require
approximately 200 times more computer power than
comparable acoustic simulations. Incorporation of attenuation,
anisotropy, and/or surface topography will be even more
computationally intensive. The necessary computational
resources can be obtained with enhanced algorithms, and with
high performance computing and massively parallel
processing. In the next few years, the world’s most powerful
computers will have  bytes of internal memory, and will
be capable of performing  floating point operations per
second. This is approximately 100,000 times more powerful
than typical scientific workstations. It is important for the oil
industry to be prepared to utilize this great increase in
computational power.
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3-D elastic modeling

maintains it’s own distributed memory. This memory is not
directly accessible by the other nodes. A scientific problem
can be decomposed across the nodes of a parallel machine so
that each node simultaneously operates on a small portion of
the problem. Hence, larger problems can be computed faster.
Where necessary, internode communication is handled by
message passing routines. These routines are explicitly
implemented into the code, which can make the programming
task difficult. E3D uses MPI (Message Passing Interface),
among other constructs, to handle interprocess communication
on massively parallel machines. In addition, the code runs on
workstation networks using PVM (Parallel Virtual Machine).

Extremely powerful massively parallel computers are being
developed for the Department of Energy’s ASCI initiative.
Within the next few years, there will be machines with 10
TBytes of internal memory (10 trillion bytes) and observable
speeds of 10 TFlops (10 trillion floating point operations per
second). For comparison, these machines will be
approximately 100,000 times more powerful than typical
scientific workstations presently available. This is tremendous
computational power. For example, it may be possible to
conduct 25 hz full-physics seismic simulations over 3-D
geologic models tens to hundreds of kilometers in dimension.

Computational constraints

For 3-D fully heterogeneous elastic problems, E3D requires 12
floating point variables at each grid node: 3 medium
parameters, 3 velocities, and 6 components of the symmetric
stress tensor. For every time-step, 141 floating point operations
are required for each updated grid node. This is significantly
greater than 3-D acoustic modeling, where in the case of the
SEG/EAEG modeling effort, 3 floating point variables (the
acoustic velocity and the pressure at two time-steps) and 53
floating point operations per time-step were required at each
grid node. Memory and the floating point count will increase if
attenuation, anisotropy, or topography is included with the 3-D
elastic simulations.

Problem size for 3-D seismic modeling is constrained by the
available computing resources and the number of nodes in the
finite-difference grid. The number of nodes ultimately depends
on the spacing between the grid elements. For the finite-
difference scheme discussed above, it is necessary to have at
least 5-10 grid points per seismic wavelength. The wavelength
depends on the frequency of the waves and the medium
velocity. Hence, the maximum allowable size fundamentally
depends on the seismic frequency and the lowest velocity in
the medium. For 3-D models, doubling the frequency or
reducing the lowest velocity by 1/2 requires an 8-fold increase
in computer memory.

In addition, problem size is limited by the computational run-
time of the simulation. Run-time depends on the speed of the

computer, the simulation time, the number of grid nodes in the
model, and the time-step increment. The time-step increment
is constrained by the Courant condition, which depends on the
maximum velocity in the medium and the element spacing in
the finite-difference grid. Hence, the maximum allowable run-
time ultimately depends on the seismic frequency, the lowest
velocity in the medium, and the highest velocity in the
medium. For 3-D models, increasing the maximum velocity by
a factor of two doubles the run-time. More significantly,
however, doubling the frequency or reducing the lowest
velocity by a factor of 2 increases the computational run-time
by 16 times.

Example - SEG elastic modeling

Elastic finite-difference modeling will be used to generate a
subset of the acoustic SEG/EAEG model data. The two data
sets will be compared to examine the significance of elastic
noise in acoustic imaging. Also, the elastic data will be used to
examine their effectiveness as an added source of information
for the imaging process. Ideally, the influence of other
physical phenomena such as viscoelastic attenuation,
anisotropy, and topography can be considered.

Elastic modeling is computationally more intensive than
traditional acoustic techniques. In part, this is due to the
greater complexity of the elastic wave equation, which
necessitates more floating point operations per grid element. In
addition, elastic modeling imposes an increased memory
requirement on a computer system due to the need to store
more parameters describing the model. More significantly,
however, is the effect of shear wave velocity. In the SEG/
EAEG salt model, for example, the lowest acoustic velocity
was 1500 m/s (water) and 1700 m/s (sediment). The finite-
difference grid spacing was designed around these parameters.
Shear wave speeds in the low velocity sediments may be 500
m/s (or slower). Accurate resolution of mode-converted energy
in these low velocity sediments will require much finer grid
resolution, and greater computation time. In all, elastic
simulations may be 200 times more computationally intensive
than the simulations used to produce the acoustic SEG/EAEG
synthetic data.

The increased complexity of the elastic problem demonstrates
the need to utilize advanced computational techniques and
high performance computing. In addition, it emphasizes the
reason why only a subset of the acoustic data can be elastically
generated. It will be important to recognize the trade-offs
between an accurate elastic model with low shear wave
velocity and the computational burden. The E3D code has
been validated against other finite-difference codes, and
against other seismic modeling techniques. Nonetheless, it
will be necessary to validate the elastic synthetics against the
SEG/EAEG acoustic data to verify that they are simulating
corresponding models.
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Equations 1 and 2 form a first-order differential representation
of the full-elastic wave equation. As such, all mode converted
waves are simulated. These equations are discretized over a
staggered grid. In this system, each variable is staggered by
1/2 grid point spacing from the other variables (except that all
normal stresses  are computed on the same grid). A 4th-
order spatial stencil is applied to each differential term on the
right side of Equations 1 and 2. A staggered grid
implementation is beneficial because the spatial differencing
stencils are centered around each variable, which minimizes
the computational burden for a given level of accuracy.

An explicit finite-difference technique is used to update the
time derivatives on the left side of Equations 1 and 2. The
velocity updates (EQ 1) depend only on the stresses and the
stress updates (EQ 2) depend only on the velocities (in
addition to the source terms). Hence, each set of equations can
be solved independently at 1/2 time-step intervals. These
updates are 2nd-order in time, which means that all equations
can be updated in place. This reduces the memory
requirement.

Three-mechanisms are used to minimize artificial reflections
at the side and bottom boundaries of the numerical grid:
1) absorbing boundary conditions using paraxial extrapolation
(Clayton and Enquist, 1977); 2) sponge boundary conditions
using an amplitude reduction coefficient applied over a swath
of grid nodes parallel to the boundary (Cerjan et al., 1984);
3) attenuation boundary conditions using a low Q factor of
about 5 applied at nodes near the grid boundary.

A run-time visualization utility is featured, making it possible
to visually inspect the seismic wave field as the simulation
progresses. This is particularly useful for identifying the
characteristics of mode converted waves.

Physics-based enhancements

The free-surface is modeled as either a horizontal plane or as a
boundary of topographic relief. In the first case, symmetry and
stress-free conditions are used to correctly satisfy the stress
tensor at the surface (e.g., Graves, 1996). In the second case, a
density extinguishing approach is used to accurately model the
interaction of seismic energy along a realistic topographic
boundary (Schultz, 1997). While topographic modeling is not
significant in marine surveys, it may play an important role in
land surveys over rugged terrain.

Attenuation is optionally included in the basic equations using
a relaxation mechanism scheme, whereby memory variables
are added to the right side of Equation 2 (Robertsson et al.,
1994). These memory variables are updated at each time-step.
Attenuation modeling makes it possible to simulate the
viscoelastic seismic damping that occurs in many geologic
environments. This is particularly important at high
frequencies.

An anisotropic modeling capability is being incorporated into
the finite-difference code (e.g., Mora, 1989, Carcion, 1996).
Initially, this capability will be used as a reservoir
characterization mechanism for investigating the intrinsic
attributes of seismic wave propagation through fractured
media.

Computational enhancements

E3D incorporates low-level code optimization. This is
particular useful when simulations are made on vector
computer architectures, and on scientific workstations based
on modern RISC technology. Low-level optimization
improves performance 2 to 5 times.

Propagating grid mechanisms are applied in the code. Regions
of the numerical grid void of meaningful seismic energy are
not active in the computations. This is most useful in non-
parallel environments, such as scientific workstations.
Depending on the problem, a propagating grid can reduce run-
time 2 to 4 times.

Element spacing in uniformly-spaced finite-difference grids,
and hence problem size, is constrained by the lowest seismic
velocity in the medium (see below). This is unfortunate for
geologic models containing large velocity contrasts, because
high velocity regions will be over-sampled. A multiple grid
framework can be constructed, where densely sampled grids
are mapped to low-velocity regions and coarsely sampled
grids are mapped to high-velocity regions (e.g., McLaughlin
and Day, 1994). This is sometimes referred to as static grid
refinement, and in principle, is similar to adaptive grid
algorithms found in computational fluid mechanics problems
(Berger and Colella, 1989). E3D contains a layered grid
structure. A more rigorous framework that is fully 3-D is being
implemented. For typical problems, a variable grid framework
can reduce run-time and memory costs by a factor of 10.

Hybridization is a method where output from one seismic
modeling technique is incorporated as input into another
technique. This is useful when a geologic regime contains
regions that are relatively homogeneous (or layered), and other
regions that are heterogeneous and complex. A
computationally efficient scheme in the simple region (e.g.,
reflectivity), can be integrated with a robust but
computationally intensive scheme in the complex region. This
improves overall efficiency because computationally intensive
methods are not being applied to the entire region of interest.
E3D contains hybridization in the 2-D version of the code.

High performance computing

E3D is implemented on several high performance computing
architectures, and on massively parallel processors in
particular. A massively parallel machine typically has between
32 to 1024 nodes. Each node contains one or more CPU’s, and
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Summary

A 3-D finite-difference elastic wave propagation code that
incorporates a number of advanced computational and
physics-based enhancements has been developed. These
enhancements include full 3-D elastic, viscoelastic, and
topographic modeling (anisotropic capabilities are being
added), low-level optimization, propagating and variable
density grids, hybridization, and parallelization. This code
takes advantage of high performance computing and massively
parallel processing to make 3-D full-physics simulations of
seismic problems feasible. This computational tool will be
used to generate an elastic subset of the SEG/EAEG acoustic
data set. The acoustic and elastic data will be compared to
examine pitfalls with traditional processing, and to test the
effectiveness of using elastic data as an aid to seismic imaging.

Introduction

Traditional imaging and seismic modeling techniques assume
that the earth can be described as a simple medium in an
acoustic half-space. This assumption was used for the
generation of the large SEG/EAEG Acoustic Numerical
Model data set (ANM), which simulated 3-D seismic surveys
in synthetic subsalt and overthrust geologic models (e.g.,
House et al., 1998). However, the acoustic assumption does
not accurately depict important characteristics of seismic wave
propagation. These characteristics arise from elastic effects,
viscoelastic attenuation, anisotropy, and topography.

The most significant limitation in the acoustic assumption may
be the failure to model elastic wave propagation (e.g., Ogilvie
and Purnell, 1996, Kessinger and Ramaswamy, 1996). For
example, acoustic energy is partially converted into elastic
energy at the free-surface and at boundaries within the
geologic medium. The reverse is also true. This mode
converted energy has two consequences for seismic modeling
and imaging. The first consequence is “elastic noise”, where
an elastic signal is mistakenly interpreted as geologic
structure. In addition, acoustic amplitudes are incorrectly
modeled because some energy is lost to mode converted
waves. Elastic phenomena need to be modeled and understood
so that these pitfalls can be avoided. The second consequence
is that elastic modeling contains additional information about
the subsurface geologic structure. It may be possible to
incorporate this information into the seismic imaging process,
and hence improve the ability to resolve complex structure.

Elastic and other nontraditional techniques are numerically
more intensive than acoustic modeling. Hence, there is a need

to apply advanced computational technology and utilize high
performance computing and massively parallel processing.
This is important because the oil and gas industry is requiring
greater use of sophisticated modeling techniques to find and
develop hydrocarbon resources from increasingly subtle and
complex geologic settings.

Methodology - basic implementation

A robust 3-D finite-difference wave propagation code capable
of realistically simulating elastic waves in large 3-D geologic
models has been developed at Lawrence Livermore National
Laboratory. This code, known as E3D, is being used for a
number of diverse geophysical research projects. These
projects include seismic hazard evaluation, comprehensive test
ban treaty verification, and oil exploration. E3D contains
physics-based and computational enhancements. Physics-
based enhancements allow more accurate simulations of wave
propagation, and include full 3-D elastic and anelastic
(attenuation) modeling, and the capability to incorporate the
effects of surface topography on seismic energy. Anisotropic
modeling capabilities are being incorporated. Computational
enhancements make it possible to simulate larger problems
more efficiently, and include low-level optimization,
propagating and variable density grids, hybridization, and
parallelization. E3D runs on a variety of platforms, from
desktop workstations to Massively Parallel Processors (MPP).

E3D is based on the elastodynamic formulation of the full
wave equation on a staggered grid (e.g., Madariaga, 1976;
Virieux, 1986; Levander, 1988). In this formulation, the
velocities  and the stress tensor components  are solved
by an explicit finite-difference scheme (the indices correspond
to the x, y, and z Cartesian coordinates). Using summation
notation over repeated indices i, the basic equations are given
by:

(1)

and

, (2a)

(2b)

(2c)
where  is the density, is the rigidity, and  is the Lame
parameter. Body force functions  and/or seismic moment
rates  are used as source terms to drive the velocities and
stresses.
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